カテゴリーアプローチによる 生物濃縮性予測に関する報告書 [水素結合アクセプターによる双極子-双極子 相互作用が受動拡散に影響を与える物質群]

nite

平成 22 年 12 月 14 日 (独) 製品評価技術基盤機構

化学物質管理センター

実施体制

本報告書に記載されている「水素結合性アクセプターによる双極子-双極子相互作用が受動拡散に影響を与える物質群」(以下、カテゴリーII-Aという。)は、NITE 構造活性相関委員会においてレビューが行われた。当委員会の委員名簿と開催記録を以下に示す。

構造活性相関委員会名簿(就任時期)

米澤	義堯(委員長)	(独)産業総合技術研究所 安全科学研究部門
		研究員(平成 16 年 4 月~)
赤松	美紀	京都大学大学院 農学研究科 准教授(平成 16 年 4 月~)
岩田	光夫	(独)産業総合技術研究所 安全科学研究部門
		主任研究員(平成 20 年 12 月~平成 22 年 3 月まで)
内田	直行	日本大学 生物資源科学部 教授(平成 20 年 12 月~)
大川	秀郎	福山大学 生命工学部 教授(平成 16 年 4 月~)
齋藤	昇二	住友化学株式会社 生物環境科学研究所
		上席研究員(平成 18 年 12 月~)
茂岡	忠義	横浜国立大学大学院 環境情報研究院 客員教授(平成 21 年 8 月~)
田中	明人	兵庫医療大学 薬学部 教授(平成 20 年 12 月~)

開催記録

平成 21 年度	第2回構造活性相関委員会(平成21年	12 月	10日)
	第3回構造活性相関委員会(平成22年	3月	17日)

平成 22 年度 第1回構造活性相関委員会(平成 22 年 7月 12 日)

1.	はじめに	1
2.	生物濃縮性におけるカテゴリーの考え方	2
3.	カテゴリー II -A に該当する物質の考え方	3
4.	カテゴリー II -A に該当する物質の定義	6
5.	化審法既存化学物質(ベースデータセット)とカテゴリーⅡ-A に該当する物質の logPow と	
	logBCF の関係	6
6.	生物濃縮性の予測方法及び予測式	8
7.	化審法新規化学物質によるバリデーション結果	12
8.	カテゴリー II -A に該当する未点検既存化学物質の生物濃縮性予測例	13
9.	既存の構造活性相関ソフトウェアと予測式による予測結果の比較	15
10.	解析に使用したデータ及びソフトウェア	19
11.	参考文献	20
別添		21

<u>1. はじめに</u>

これまで我が国における化学物質の安全性評価は、昭和48年に施行された「化学物質 の審査及び製造等の規制に関する法律」(以下「化審法」という。)に基づいて審査されて きた。この化審法により、我が国で製造または輸入が行われたことのない新規化学物質は、 製造者あるいは輸入者からの届出に基づき事前に審査と判定が行われている。通常は化学 物質の安全性評価にかかわる試験結果(生分解性、蓄積性、スクリーニング毒性(ヒト毒 性、生態毒性))を届出者が提出し、国はこれをもとに審査及び判定を行っている^{**}。 また、化審法第2条に規定されている法律制定以前の既存化学物質(約2万物質)の生分 解性・蓄積性に係る実測試験は国が行ってきたが、これまでに取得された実測データは 2,000物質に満たない。これらの実測試験を行うには膨大な時間・労力・経費がかかるた め、実測試験に代わる方法としてカテゴリーアプローチや構造活性相関手法の活用が検討 されている。

独立行政法人製品評価技術基盤機構(以下「NITE」という。)は、これらの実測試験に 代わる方法として構造活性相関手法に関する取り組みを開始し、平成16年度にNITE内 で設立された構造活性相関委員会において、生分解性・蓄積性における構造活性相関手法 の活用について検討を開始した。平成16、17年度に生分解性・蓄積性における構造活性 相関モデルの調査及び既存のソフトウェアのバリデーション¹¹と選定を行い、平成17~19 年度に選定した構造活性相関ソフトウェアによる未点検既存化学物質の実測試験の優先 順位付けを行った。この結果は、未点検既存化学物質における実測試験実施物質の選定に 役立てられた。平成19年度〜現在においては、未点検既存化学物質の優先順位付けに限 らず、化学物質のリスク評価におけるハザード評価の第一段階として用いることができる 生分解性・蓄積性の構造活性相関手法について検討を行っており、特に現在世界的に検討 が進められている"カテゴリーアプローチ"を活用した予測手法について検討を行ってい る。

本報告書は、化審法の既存化学物質安全性点検の濃縮度試験データ ²⁾を基に、NITE で 蓄積性におけるカテゴリーアプローチの検討を行い、2009 年 10 月に発表したカテゴリー I:単純受動拡散カテゴリーに続いて、カテゴリーII-A:水素結合性アクセプターによ る双極子-双極子相互作用が受動拡散に影響を与える物質群に分類される化学物質の定 義及び予測方法について、報告書としてまとめたものである。

※ただし、届出に基づく事前審査の結果、難分解性ではあるが高蓄積性ではないと判定された 製造・輸入数量の国内総量が年間10トン以下であるもの、予定されている取扱方法等から見 て環境汚染が生じるおそれがないもの(中間物、閉鎖系等用途、輸出専用品)または我が国で の製造・輸入数量が年間1トン以下であるもの(少量新規化学物質)については、製造・輸入 者からの申出に基づいて国の事前確認を受けた場合には、特例として製造・輸入が可能となる。

1

2. 生物濃縮性におけるカテゴリーの考え方

化学物質の生体内への取り込みは、主に①受動拡散、②傍細胞経由、③能動輸送、④膜 動輸送によって起こると考えられており、大部分の物質は①受動拡散によって生体内に取 り込まれる(3.参照)。この受動拡散による化学物質の拡散は、理論的にはFickの第1 法則に従い、水和している水分子や生体膜中の生体分子との分子間相互作用の影響を受け ると考えられる。また、化学物質の生体内への蓄積と生体内からの排出(排泄)には、脂 質に溶解したときの安定性、生体内での反応性(タンパク質結合性、生体内における代謝) などが影響を与える。タンパク質結合性を有する物質は、タンパク質との結合により生体 内に蓄積され、代謝反応によって代謝物を生成する物質は、生体内から排出され易いこと が想定される。

化学物質に水和している水分子及び生体分子との分子間相互作用としては、主にファン デルワールスカ、双極子-双極子相互作用、水素結合性相互作用(水素結合性ドナーまた はアクセプター)、イオン性相互作用が考えられる(3.参照)。生体膜透過における双極 子-双極子相互作用及び水素結合性相互作用の影響として、物質が生体膜中に取り込まれ る際の水素結合の開裂に伴うエネルギーの損失や生体膜中のリン脂質等の生体分子との 分子間相互作用による拡散速度の低下などが考えられる³⁾。また、水素結合性相互作用が 生体膜透過に与える影響として、創薬の世界でよく知られている法則の一つに「Lipinski のルールオブファイブ」があり、「水素結合性アクセプター」よりも「水素結合性ドナー」を 多数持つ物質の方が、生体膜を透過しにくいことが経験的に知られている⁴⁾。生体膜透過 におけるイオン性相互作用の影響としては、水素結合性相互作用の場合と同様に、水素結 合の開裂に伴うエネルギーの損失、生体膜中の生体分子との分子間相互作用による拡散速 度の低下に加えて、水和による見かけ上の分子容積の増大に伴う拡散速度の低下、生体膜 表面におけるリン脂質のアニオンとの静電的相互作用なども想定される。

上述のことを考慮すると、化学物質の生体内への取り込みメカニズム、水中及び生体中 での分子間相互作用(水和している水分子及び生体分子との分子間相互作用)、生体内にお ける反応性(タンパク質結合性、生体内における代謝)の違いによって、化学物質の生物濃 縮挙動は異なる。これらの違いによって物質を大まかに分類すると、生物濃縮性における カテゴリー分類は Scheme 1 のようになると考えられる。

化学物質の生体内への取り込みは、生体膜透過におけるメカニズムと分子間相互作用の 違い(3.参照)によって挙動が異なるため、それぞれを別カテゴリーとして考える必要があ る。(Scheme 1 の I ~ III、VI)。また、生体内での反応性が高い物質は、タンパク質との結 合による生体内への蓄積や代謝反応によって生体内から排出され易いことが考えられる ため、これらの物質も別カテゴリーとして取り扱う必要がある(Scheme 1 のIV、V)。「水 中において容易に分解する物質」は、分解物で生物濃縮性を評価する必要がある(Scheme 1 のVII)。

Scheme 1 生物濃縮性におけるカテゴリー分類の全体像(イメージ)

3. カテゴリー II - A に該当する物質の考え方

魚類における濃縮度試験において、化学物質の魚体内への取り込みは、主に鰓の生体膜 を透過することによって起こると考えられている。鰓の生体膜からの透過機序としては、 主に以下の4つの経路が考えられる^{5),6),7),8)}。

- ① 呼吸細胞経由の濃度勾配(受動拡散)による取り込み
- ② 傍細胞経由による取り込み
- ③ 非呼吸細胞(塩類細胞など)経由の能動輸送による取り込み
- ④ 膜動輸送による取り込み

一般的な化学物質は呼吸細胞経由の濃度勾配(受動拡散)によって、生体内に取り込まれ る(透過機序①)。①のメカニズムにおいては、分子の疎水性が重要な因子となる。また、 生体膜には細孔が存在し、分子サイズが小さい水溶性の物質は、この細孔を水分子と共に 透過することで生体内に取り込まれる(透過機序②)。この細孔の大きさは直径 約 4Åで、 水の吸収に伴って拡大すると推測されている ⁷。一方、ごく一部の生体に必要な物質また はタンパク質は、単純な拡散ではなく、トランスポータによる特異的な輸送機構(透過機序 ③)やエンドトーシスと呼ばれる細胞表面で生体膜の一部が陥入し、物質が膜内に取り込ま れる過程(透過機序④)を経て、生体内に取り込まれる⁸。

ここで①のメカニズムが取り込みの支配要因となる物質の魚類における生物濃縮性 (logBCF*1)は、物質の疎水性を表すパラメータの一つである logPow^{*2}と相関があることが よく知られている^{9,10)}。理論上、logPow と logBCF が特に良好な相関を持つ物質は、物質 の生体膜透過における濃度勾配以外の影響因子が少ない、すなわち水中の水分子、生体膜 分子との相互作用が弱い物質であると考えられる(別添 1-1、1-2)。

生体膜透過における化学物質と生体膜分子との分子間相互作用は、大まかにA.ファンデルワールスカ、B.双極子ー双極子相互作用、C.水素結合性相互作用、D.イオン性相互作用の4つに分類される。4つの分子間相互作用における静電的相互作用と静電的相互作用エネルギーの理論式をTable 1 に示す。

A は分散力(誘起双極子-誘起双極子の静電的相互作用)に起因する力^注、B は配向力(双極 子-双極子の静電的相互作用)に起因する力である^{11,12}。C は B の一種とも考えることがで きる力で、電気陰性度が高い原子(例えば O、N、F、Cl)に結合した水素が正電荷に分極さ れることによって、配向力が特に強く働くことに起因した力である。D は 2 つの荷電した 原子に働くクーロン力(イオン-イオンの静電的相互作用)に起因する力で、分子間相互作 用の中でも特に強い力である。

一般的に A<B<C<D の順で右にいくほど分子間相互作用が強く、A が主要な分子間相互 作用として働く物質(カテゴリーI)は、物質の生体膜透過における濃度勾配以外の影響因 子が少なく、logPow と logBCF が良好な相関を持つ¹⁴⁾。その一方、A に加えて B 及び C が働く物質 (カテゴリーII)、D が働く物質 (カテゴリーIII) は、カテゴリー I に該当する 物質よりも分子間相互作用が強く、logPow と logBCF との相関が弱い可能性がある。また、 B 及び C が働く物質において、水素結合性アクセプターと水素結合性ドナーを持つ物質で は、生体膜透過における影響が異なることが経験的に知られているため、水素結合性アク セプターのみを持つ物質をカテゴリーII – A、水素結合性アクセプター及びドナーを持つ 物質のみをカテゴリーII – B として定義した。

また、生体膜は一般的にタンパク質とリン脂質(ホスファチジルコリン(PC)、ホスファチ ジルセリン(PS)、ホスファチジルエタノールアミン(PE)など、Fig.1 参照)によって構成さ れている。本報告書で定義した生物濃縮性におけるカテゴリーと生体膜透過において主に 作用する化学物質と生体膜の物質の部位、分子間相互作用との関係を Table 2 に示す ^{11),12)}。

注:A.ファンデルワールスカは厳密には、分散カ(誘起双極子-誘起双極子の静電的相互作用)、誘起力(誘起 双極子-双極子の静電的相互作用)、配向カ(双極子-双極子の静電的相互作用)の3つに起因するカと定 義されるが、誘起カと配向カの寄与は分散カと比較すると極めて小さいため、ここでは考慮していない。 *1 化学物質の魚体中濃度と水中濃度との比([魚体中濃度]/[水中濃度])の対数値

^{*2} 水と1-オクタノールの2つの溶媒層に化学物質を加えて、平衡に達したときの濃度比

^{([1-}オクタノール中の物質濃度] /[水中の物質濃度])の対数値

Table 1 分子間相互作用における静電的相互作用と 静電的相互作用エネルギーの関係 ^{11),12),13)}

_	分子間相互作用	分子間相互作用において 主要に働く静電的相互作用	静電的相互作用 エネルギーの理論式	分子間相互作用 エネルギーの大きさ <u>[kJ mol⁻¹]</u>
_	A.ファンデルワールスカ	誘起双極子-誘起双極子	$V \propto \frac{\alpha \alpha'}{r^6}$ (1)	< 1
	B.双極子-双極子相互作用	双極子-双極子	$V \propto \frac{\mu^2 \mu'^2}{r^6} (2)$	< 2
	C.水素結合性相互作用	水素結合	不詳	10~30
_	D.イオン性相互作用	イオンーイオン	$V \propto \frac{qq'}{r}$ (3)	400~4000
		$\left(\begin{array}{c} \mathbf{V}:$ 相互作用工 $\left(\begin{array}{c} \alpha : $ 分極率、 $\mu \end{array} \right)$	ネルギー、r:2分 :双極子モーメン	子間の距離 ト、 q:点電荷)
	R ¹ の ホスファチジルコ	0 	0 R ² 0 0 0 「 0 ホスファチジルエタノー) NH ₂ ールアミン(PE)

ホスファチジルセリン(PS)

Fig.1 生体膜におけるリン脂質の物質例(R¹、R²: 鎖状炭化水素(C=4-30))

Table 2 生物濃縮性におけるカテゴリーと生体膜透過において主に作用する

	生体膜透過にお		
カテゴリー	化学物質	化受物質生素	
		(相互作用する官能基)	
т	非水表结合性部位	非水素結合性部位	
1	界水来和日任时区	(リン脂質の疎水性部分など)	
		水素結合性アクセプター	◎亚楝子—亚楝子相互作田
Π Δ	北圭は合性マクトプター	(リン脂質のエステル基など)	● 《怪】 《怪】 伯王作用
ш-А	小糸和石住ノクセノター	水素結合性ドナー	北美结合州相互作用
		(PEのアミン基、PSのアミノ基など)	小米帕口江伯五作用
		水素結合性アクセプター	
		(リン脂質のエステル基など)	双極子-双極子相互作用
Ш-В	小茶柿合性トナー	エトナー 水素結合性ドナー ◎水素結合性	
		(PEのアミン基、PSのアミノ基など)	
ш	ノナン性部位	イオン性相互作用部位	
ш	イオン住命位	(PSのカルボキシル基など)	して NTA フロ TETE ユ作用

◎: 生物濃縮性において主に働くと考えられる分子間相互作用

4. カテゴリーⅡ-Aに該当する物質の定義

カテゴリーII-A には、化学物質と生体分子との相互作用において、ファンデルワール スカ、双極子-双極子相互作用が主要な分子間相互作用として働く水素結合性アクセプタ ーを持つ物質が該当する。

データセットに用いた化審法既存化学物質(373 物質)(11.参照)では、以下の官能基を持つ物質群 i ~ixが該当することを確認した(別添 2 の Table 1,2 参照)。

- i. 3級アミン及び3級アミド基
- ii. エーテル基
- iii. ケトン基
- iv. ジアゾ基
- v. スルフィド及びジスルフィド基
- vi. スルホニル基
- vii. ニトロ基
- viii. ニトロソアミン基
- ix. ピリジン、ピペリジン、モルホリン、フラン、チオフェン、チアゾール(ただし、Hと結合したNを持つ物質を除く)

POPs 条約規制対象物質及び対象候補物質(21 種類の物質)では、以下の7 種類がカテゴリー定義に該当する。

- ディルドリン
- エンドリン
- ポリ塩化ジベンゾパラジオキシン及びポリ塩化ジベンゾフラン
- テトラブロモジフェニルエーテル及びペンタブロモジフェニルエーテル
- クロルデコン
- ヘキサブロモジフェニルエーテル及びヘプタブロモジフェニルエーテル
- パーフルオロオクタンスルホン酸フルオリド (PFOSF)

5. 化審法既存化学物質(ベースデータセット)とカテゴリー II ーAに該当する物質の logPow と logBCF の関係

ベースデータセット 373 物質(10.参照)の中で、カテゴリーII-A に該当する 78 物質 をトレーニングセットとして用いた。トレーニングセットに用いた 78 物質の logPow(実測 値) vs. logBCF プロット(全 67 物質)、logPow(計算値)^{*3} vs. logBCF プロット(全 78 物質) をそれぞれ Fig.2、3-1、また、 $3 \leq \log$ Pow(計算値) ≤ 7 の物質についてプロットした結果 を Fig.3-2 に示す。このトレーニングセット(78 物質)の中で、予測式の適用範囲内(6.参 照: logPow^{*3}<6 かつ Dmax^{*4}<11Å)である 44 物質、予測式の適用範囲外(logPow^{*3} ≥ 6 ま たは Dmax^{*4} ≥ 11 Å)の 34 物質をそれぞれ別添 2 の Table 1,2 に示す。

[○:ベースデータセット(299 物質)、●:カテゴリー II ーA に該当する予測式の適用範囲内(Dmax<11Åかつ logPow≧6)の物質(40 物質)、▲:カテゴリー II ーA に該当する予測式の適用範囲外(Dmax≧11Åまたは logPow≧6)の物質(27 物質)]

Fig.3-1 logPow(計算値)*3 vs. logBCF プロット(全体図)

[○:ベースデータセット(373 物質)、●:カテゴリー II ーA に該当する予測式の適用範囲内(Dmax<11Åかつ logPow≧6)の物質(44 物質)、▲:カテゴリー II ーA に該当する予測式の適用範囲外(Dmax≧11Åまたは logPow≧6)の物質(34 物質)]

Fig.3-2 logPow(計算値)^{*3} vs. logBCF プロット(-3≦logPow≦7) [○:ベースデータセット(373 物質)、●:カテゴリーⅡ-Aに該当する予測式の適用範囲内(Dmax<11Åかつ logPow≧6)の物質(44 物質)、▲:カテゴリーⅡ-Aに該当する予測式の適用範囲外(Dmax≧11Åまたは logPow≧6)の物質(34 物質)]

6. 生物濃縮性の予測方法及び予測式

カテゴリーII-A に関与する分子間相互作用としては、ファンデルワールスカ、双極子 -双極子相互作用が考えられ、分子間相互作用エネルギーに関連するパラメータとしては、 分極率(α)、双極子モーメントの2乗(μ ²)が考えられる(Table 1の理論式(1)、(2))。 そのため、 μ ²とモル屈折率(Molecular Refraction[MR]、 α と比例関係にある値)の大き さの違いに基づいて物質を分類し、logPow と logBCF との関係について解析を行った(別 添 1-3参照)。この解析の結果から、カテゴリーII-A に該当する物質は μ ²、MR の値に 関わらず、logPow と logBCF 間に良好な相関を有し、カテゴリーI に該当する物質と類似 の生物濃縮挙動を示すことがわかった。このことから、カテゴリーII-A に該当する物質 は、生物濃縮における水素結合性相互作用の影響が弱く、カテゴリーI に該当する物質と 類似の生物濃縮挙動を示すため、カテゴリーI と同様の予測方法(カテゴリーI の logPow を記述子とした予測式(1)または予測式(2)と Read-across)を用いて、生物濃縮性を予測す ることが可能である。

ただし、カテゴリーⅡ-A であっても次の条件に該当する物質は、予測式を用いた予測 の適用範囲外とする。

- 1. logPow(実測値) ≥6 または logPow(計算値)*3 ≥6 の物質
- 分子サイズが大きく、生体膜透過における拡散速度が遅くなる物質 (Dmax^{*4,5}≥11Å)
- *3 logPow(計算値): KOWWIN ver.1.67を用いて算出される値

*4 Dmax:分子を球に入れたとき最小となる直径の値 Database Manager ver.1.3 を用いて算出 計算条件: Conversion mode: Automated OASIS Conformer generation: Rapid Calculation method: AM1 *5 他の立体効果のパラメータを用いる場合もある

① logPow(実測値)を記述子とした予測式による予測

カテゴリーII-A に該当する物質は、分子間相互作用が弱いと考えられるため、カテゴ リーIの場合と同様に logPow を記述子とした予測式を用いて logBCF を予測することが 可能と考えられる。(ただし、カテゴリーII-A に該当する物質のうち、分子サイズが大き い物質(Dmax \geq 11Å)または logPow(実測値) \geq 6 の物質は、logPow(実測値)と logBCF(実測 値)の相関が弱い。また、logPow(実測値)<0 の濃縮性が小さい物質は、濃縮度試験におけ る実測誤差や物質の揮発性、代謝の影響等の様々な要因によって、logBCF の実測値にバ ラつきが生じるため、logPow(実測値)と logBCF(実測値)との相関が弱い傾向にある。)従 って、カテゴリーI で作成した予測式(1)とカテゴリーII-A に該当する物質の logPow(実 測値)と logBCF(実測値)をプロットし、両者の関係について検討を行った(Fig.4)。

logBCF = 1.05logPow(実測値) -1.71 ・・・(1)

Fig.4 の **R**²、**Q**² は、それぞれ予測式(1)における決定係数、クロスバリデーション (leave-one-out 法)後の決定係数である。プロットにおける実線は予測式、点線は予測式か ら算出される logBCF(予測値)の 95%信頼区間である。また、各 logPow(実測値)における logBCF(予測値)の 95%信頼区間上限値、下限値を Table 3 に示す。

Fig.4 を見ると、予測式(1)の適用範囲内のカテゴリーⅡ-A に該当する物質(Dmax<11 Å、logPow<6)のほとんどが予測式(1)の 95%信頼区間内に存在する。このことから、カテゴリーⅡ-A に該当する物質は、カテゴリーⅠに該当する物質と類似した生物濃縮のメカニズムを持つと考えられ、カテゴリーⅠの場合と同様に logPow(実測値)を記述子とする予測式(1)を用いて、logBCF を予測することが可能である。

②logPow(計算値)を記述子とした予測式による予測

カテゴリーII-A に該当する物質の logPow(実測値)と logBCF(実測値)との間に良い相関が見られたため、カテゴリー I で作成した予測式(2)とカテゴリー II-A に該当する物質の logPow(計算値)*3と logBCF(実測値)との関係について、検討を行った。

$logBCF = 1.03logPow(計算値)^{*3} - 1.48$ ・・・(2)

予測式(2)とカテゴリーII – Aに該当する物質のlogPow(計算値) vs. logBCF(実測値)プロ ットを Fig.5 に示す。予測式における \mathbb{R}^2 、 \mathbb{Q}^2 は、それぞれ決定係数、クロスバリデーショ ン(leave-one-out 法)後の決定係数である。プロットにおける実線は予測式、点線は予測式 から算出される logBCF(予測値)の 95%信頼区間である。また、各 logPow(計算値)におけ る logBCF(予測値)の 95%信頼区間上限値、下限値を Table 4 に示す。

カテゴリーII-A に該当する物質の logPow(計算値)と logBCF(実測値)との関係は、カ テゴリーIの場合とは異なり、logPow(実測値)と logBCF との関係で良好な相関が見られ た物質についても、プロットがバラつく傾向にある。このプロットのバラつきの要因の一 っとして、カテゴリーⅡ-A に該当する物質はカテゴリーI に該当する物質とは異なり、 logPow(計算値)の計算誤差が大きいことが考えられる(別添2のTable 1,2の物質3、51、 65 など)。そのため、logPow(計算値)を記述子とする予測式(2)を用いてカテゴリーⅡ-A に該当する物質の logBCF の予測を行うには、Read-across と併用して類縁物質の logPow の計算誤差が少ないこと等を確認することが必要である。

③Read-across による予測

カテゴリーII-Aにおいては、logPowとlogBCFとの関係式による予測を行うと同時に、 トレーニングセット (78物質)を用いて Read-across による予測を行い、両者の結果から生 物濃縮性予測を行う。

Read-across は、未試験物質の有害性等を同じカテゴリー内に属する有害性等が既知の 類縁物質(分子構造、物理化学的性状が類似な物質)から予測する方法で、OECD (Q)SAR Application Toolbox¹⁵⁾で提唱されている予測手法である。logBCF(予測値)は、選択した類 縁物質の logBCF(実測値)の平均値から算出する(予測例:8.の②参照)。ただし、有害性等 が既知の類縁物質がない場合には、Read-across による予測を行うことができない。

「トレーニングセット(予測式の適用範囲内:Dmax<11Åかつ logPow<6 40 物質)、
 △:トレーニングセット(予測式の適用範囲外:Dmax≧11Åまたは logPow≧6 27 物質)]

上限值。			
logPow	logBCF	logBCF	logBCF
(実測値)	(予測値)	95%信頼区間	95%信頼区間
[-]	[-]	(上限値)	(下限値)
2.0	0.39	0.96	-0.18
2.5	0.92	1.47	0.36
3.0	1.44	1.99	0.89
3.5	1.97	2.50	1.43
4.0	2.49	3.03	1.95
4.5	3.02	3.56	2.47
5.0	3.54	4.09	2.99
5.5	4.07	4.63	3.50
6.0	4.59	5.17	4.01

Table3 logPow(実測値)とlogBCF(予測値)と95%信頼区間の

の工成	の上版値よれば上版値						
logPow	logBCF	logBCF	logBCF				
(計算値)	(予測値)	95%信頼区間	95%信頼区間				
[-]	[-]	(上限値)	(下限値)				
2.0	0.58	1.18	-0.02				
2.5	1.10	1.68	0.51				
3.0	1.61	2.19	1.03				
3.5	2.13	2.70	1.55				
4.0	2.64	3.21	2.07				
4.5	3.16	3.73	2.58				
5.0	3.67	4.26	3.08				
5.5	4.19	4.78	3.59				
6.0	4.70	5.32	4.08				

Table4 logPow(計算値)*3とlogBCF(予測値)と95%信頼区間

のトロはまたけ下回は

7. 化審法新規化学物質によるバリデーション結果

化審法新規化学物質(11.参照)の中でカテゴリー II - A の定義に該当し、logPow(計算 値)<6 かつ Dmax<11Å、(試験濃度) \leq (対水溶解度)の条件に当てはまる物質は 29 物質であ った。式(2)から算出した logBCF の予測値と実測値のプロットを Fig.6 に示す。この予測 結果を評価したところ、物質 A を除いて良好な予測結果が得られた。

予測がフォールスポジティブ側に大きく外れた物質 A は、脂環式のケトン化合物であった。予測がフォールスポジティブに外れた可能性の一つとして、脂環式のケトン化合物の logPow(計算値)が過大に見積もられていることが考えられる(別添 2 参照、物質 36[logPow(実測値)=1.67,logPow(計算値)=2.62],物質 75[logPow(実測値)=3.17,logPow(計算値)=3.73])。また、物質 A はデータセットに類似物質がなく、Read-across による予測を 行うことができないため、物質 A は「予測できない物質」であると判断した。

Fig.6 化審法新規化学物質によるバリデーション結果

8. カテゴリーII-Aに該当する未点検既存化学物質の生物濃縮性予測例

カテゴリーII – A の定義に該当する未点検既存化学物質の中で、予測式(2)の適用範囲内 (logPow<6 かつ Dmax<11 Å)の 64 物質と予測式(2)から算出された logBCF(予測値)を別添 2 の Table 4 に示す。また、カテゴリーII – A に該当する未試験物質の生物濃縮性予測の ケーススタディとして、(別添 2 の Table 4 の No.119、以下 p-DNB という)の予測例を示 す。

①logPow(計算値)*3と予測式(2)を用いた予測

p-DNBの logPow(計算値)*3は 1.63 である。この値を式(2)に代入すると、

logBCF(予測値) = 1.03*1.63−1.48 = 0.198… ≒0.20

logPow(計算値)=xとおくと、logBCFの 95%信頼限界は次式(3)より算出される。

$$[95\%信頼限界] = \sqrt{Ve\left\{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{Sxx}\right\}} \times t(自由度, 0.05)$$
(3)

ここで、*Ve*(誤差分散)=0.0809、 $n(\vec{r}-\rho X)=54$ 、*Sxx*($x \circ n T = 54$)=32.024、 \bar{x} ($x \circ T = 54$)=32.024、 \bar{x} ($x \circ T = 54$) 均値)=3.77 である。また t分布表より、($\alpha = 0.05$ 、自由度 53、両側)のとき t=2.006、これ ら全ての値を式(3)に代入すると、 $x_0=1.63$ のときの 95%信頼限界は、

$$[95\% fint R R] = \sqrt{0.0809 \times \left\{1 + \frac{1}{54} + \frac{(1.63 - 3.77)^2}{32.024}\right\}} \times 2.006 = 0.614 \dots = 0.61$$

よって、予測式(2)から算出される p-DNB の logBCF(予測値)は

logBCF(予測値) = 0.20±0.61

②Read-across による予測

p-DNB (logPow(計算値)*3=1.63)の Read-across に用いる類縁物質は、①分子構造の類似性(基本骨格、置換基)、②物理化学的性質(logPow、分子量など)の両方の観点から選択する 必要がある。そこで、トレーニングセット(78 物質)の中から、以下の条件に基づいて類縁 物質の選択を行った。

1. ベンゼン2置換体

2. 置換基はニトロ基を1つ以上含む

3. 類縁物質の logPow(計算値)*3 が 1.63(p-DNB の値)±1.0

その結果、以下の 8 物質を p-DNB の類縁物質として選択した(Table 5)。 これらの 8 物質の logBCF の平均値を算出し、p-DNB の logBCF(予測値)とする。

$$\log BCF(i) = \frac{(0.60 + 0.75 + 0.79 + 0.91 + 1.04 + 1.12 + 1.14 + 1.18)}{8} = 0.94$$

また、t分布表より(α=0.05、自由度7、両側)のとき t=2.365、8 物質の logBCF の標準誤 差(S.E.)= 0.0750 より、logBCF(予測値)の95%信頼限界は、

[95%信頼限界] = 0.0750×2.365 = 0.18

よって、Read-across から算出される p-DNB の logBCF(予測値)は

<u>logBCF(予測値) = 0.94±0.18</u>

③p-DNBの生物濃縮性の評価

p-DNBの logBCF は予測式(2)、Read-across を用いた予測によって、それぞれ 0.20± 0.61、0.94±0.18 と予測された。両者の値の最大値は 3 を超えないことから、この物質の 生物濃縮性は「高濃縮性ではない」と判断する。

No.		評価対象物質	1	2	
CAS No.		100-25-4	91-23-6	555-03-3	
物質名		p−ジニトロベンゼン	₀−ニトロアニソール	m-ニトロアニソール	
分子構造		0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0		-o -v -v o	
	実測値	-	0.60	0.75	
IOGDUF	予測値 (相関式)	0.20±0.61	0.47±0.61	0.47±0.61	
	実測値	1.46	1.73	2.16	
IUGFUW	KOWWIN	1.63	1.89	1.89	
分子量	1 1	168.1	153.1	153.1	
沸点 [℃]		-	-	_	
対水溶解性[ppm]		-	1690	100	
Dmax [Å]	9.9	9.3	10.3	

Table 5 p-ジニトロベンゼンと選択された類縁物質(8 物質)

No.		3	4	5	
CAS No.		100-17-4	99-99-0	99-08-1	
物質名		p-ニトロアニソール	p-ニトロアニソール p-ニトロトルエン		
分子構造		0 N O		, , , , , , , , , , , ,	
	実測値	1.04	0.79	0.91	
IOgBCF	予測値 (相関式)	0.47±0.61	0.95±0.59	0.95 ± 0.59	
	実測値	2.01	2.37	2.42	
IUgruw	KOWWIN	1.89	2.36	2.36	
分子量	1	153.1	137.1	137.1	
沸点 [℃]		-	_	-	
対水溶解性[ppm]		590	442	100	
Dmax [Å]	10.7	9.5	9.2	

				[
No.		6	7	8	
CAS No.		88-72-2	88-73-3	100-00-5	
物質名		₀-ニトロトルエン	₀−ニトロクロロベンゼン	p-ニトロクロロベンゼン	
分子構造		, , , , , , , , , , , , , , , , , , ,			
	実測値	1.18	1.12	1.14	
IUGDUF	予測値 (相関式)	0.95 ± 0.59	1.05 ± 0.59	1.05 ± 0.59	
	実測値	2.35	2.24	2.46	
IUGFUW	KOWWIN	2.36	2.46	2.46	
分子量		137.1	157.6	157.6	
沸点 [℃]		-	-	-	
対水溶解性[ppm]		652	440	453	
Dmax [Å]	8.5	8.5	9.6	

Table 5 p-ジニトロベンゼンと選択された類縁物質(8 物質)[続き]

9. 既存の構造活性相関ソフトウェアと予測式による予測結果との比較

カテゴリーII-Aのトレーニングセット(78物質)の中で、予測式の適用範囲内(logPow<6 かつ Dmax<11Å)にある 44 物質の生物濃縮性を既存の構造活性相関ソフトウェア(3 モデ ル、11.参照)を用いて予測を行い、予測式(1)、(2)による予測結果との比較を行った。予測 式(2)、BCFWIN、Baseline モデルにおいては全 44 物質、予測式(1)においては、logPow(実 測値)がない4物質(No.5,8,12,35)を除く全 40 物質、CERI モデルでは 13 物質(No.5,7,12,27, 28, 29, 31, 34, 35, 37, 41, 42, 43)を除く 31 物質が予測された。既存の構造活性相関ソフト ウェア(3 モデル) と予測式(1)、(2)の logBCF の予測値と実測値のプロットを Fig.7~11 に 示す。Fig.における R²、S.D.はそれぞれ予測値と実測値間の決定係数及び標準偏差の値で ある。

BCFWIN では、38 物質に対して予測式(logBCF = 0.6598 logPow -0.333)、1 物質(No.12) に対して予測式(logBCF = 0.6598 logPow -1.673)、5 物質(No.38, 39, 41, 42, 43)に対して は logBCF=0.50(logPow<1 の物質)を用いて予測を行った(Fig.7、R²=0.731)。BCFWIN の 予測結果が大きく外れたのは、3 物質(No.5, 8, 12)であった。これらの 3 物質の予測結果が 大きく外れた要因の一つとして、logPow(実測値)が測定されていないことから、logPow の 計算誤差が考えられる。

CERI モデルでは 31 物質に対して予測式(logBCF = 0.76logPow -0.76 または logBCF = 0.76logPow -1.76)を用いた予測、11 物質(No.12, 27, 28, 29, 31, 34, 35, 37, 41, 42, 43)に対して定性的予測(logBCF<3)が行われ、フッ素化合物である 2 物質(No.5,7)は予測不能であった(Fig.8、R²=0.796)。CERI モデルで予測式を用いた予測結果が大きく外れたのは、4物質(No.1, 2, 3, 8)であった。CERI モデルは、logPowの計算ソフトウェアとして ClogP 4.0

を用いている。予測結果が大きく外れた3物質(No.1,2,3)については、logPowの計算誤 差が大きいことが原因で、予測が大きく外れたと考えられる(No.1:logPow(実測値)=5.65、 logPow(計算値):4.55、No.2:logPow(実測値)=5.41、logPow(計算値)=4.55、No.3:logPow(実 測値)=5.21、logPow(計算値)=3.96)。No.8 については、logPow(実測値)が測定されていな いとから、logPowの計算誤差が可能性の一つとして考えられる。

Baseline モデルでは、全44 物質に対して予測が行われ、BCFWIN よりも予測精度が良 く、CERI モデルと同等の予測精度が得られた(Fig.9、R²=0.793)。このモデルにおいて、 予測結果が大きく外れたのは、3 物質(No.3,5,40)であった。Baseline モデルは、いくつか の物質において生体内における代謝の影響を考慮した予測を行う。この代謝の予測には、 ラットの代謝データが用いられているが、魚類の代謝とは反応または反応速度に種差があ ることが予想される。予測結果が外れた 3 物質(No.3,5,40)については、代謝影響の過大評 価、logPow、logBCF の計算または実測誤差等が原因で、予測が外れた可能性がある。

BCFWIN、CERI モデルの 2 モデルの予測式の傾きは、カテゴリーⅡ-A の予測式(1) よりも小さく、このことが原因で logPow ≥ 2 の物質では予測値よりも実測値の方が高い傾 向にあった。その一方、カテゴリーⅡ-A の予測式(1) (logBCF = 1.05logPow -1.71)を 用いた予測では、logBCF ≥ 2 の物質においても良好な結果(Fig.10、R²=0.855)が得られた。 予測式(2)を用いた予測においては、既存の構造活性相関ソフトウェアよりも予測結果が悪 い傾向(Fig.11、R²=0.701)が得られている。予測式(1)と(2)の決定係数が大きく異なる原因 として、logPow(計算値)の予測誤差の影響が考えられる。このことは、カテゴリーⅡ-A に該当する物質の中には logPow の計算誤差が大きい可能性がある物質が含まれているこ とを示している。そのため、未試験物質の生物濃縮性予測を行う際には、類縁物質の logPow の計算誤差が小さいことを確認する等の検討を踏まえた上で、予測を行う必要がある。

Fig.9 Baseline モデルによる予測結果(44 物質)

10. 解析に使用したデータ及びソフトウェア

(1) 本報告書で用いた物質及び濃縮度試験データ

1. ベースデータセット:

化審法既存点検による濃縮度試験結果が公表されている全 783 物質(平成 20 年 8 月 12 日 まで)²⁰の中で、以下の条件を満たす 373 物質を解析データに使用した。

- 1) 有機低分子量かつ濃縮度試験が化合物単体で行われているもの(662物質)
- 2) 対水溶解度が明確に測定されており、対水溶解度より低い濃度で濃縮度試験が なされたもの(417物質)
- 3) 測定濃度が検出限界以下でなく、BCF 値が明確に測定されているもの(各物質の BCF 値には、最低濃度区の後半3週における魚2匹(6点)の濃縮倍率の 平均値を使用した。測定結果に [検出限界以下]の記述がある場合には、その 上の濃度区のデータを解析に用いた)

2. バリデーションセット:

昭和 50 年度から平成 19 年度までに届け出られた化審法新規化学物質の中で、以下の条件 を満たす 906 物質の濃縮度試験結果をバリデーションに使用した。

- 1) 有機低分子量かつ濃縮度試験が化合物単体で行われているもの
- 2) 測定濃度が検出限界以下でなく、BCF 値が明確に測定されているもの(各物質のBCF 値には、最低濃度区の後半3週における魚2匹(6点)の濃縮倍率の平均値を使用した。測定結果に[検出限界以下]の記述がある場合には、その上の濃度区のデータを解析に用いた)

3. 予測例に用いた未点検の化審法既存化学物質

濃縮度試験が未実施の第2類から第5類に属する化審法既存物質で、平成19年度実績に おける年間の製造・輸入量¹⁵⁾の合計が10t以上確認されたもののうち、化学構造が特定可能 な物質を用いた。

(3) 本報告書で使用したソフトウェア

- 1. logPow(計算値)の算出: KOWWIN ver.1.67 (US EPA)
- 2. 分子を球に入れたとき最小となる直径(Dmax)の算出:

Database Manager 4.3 ver. 1.3 (Laboratory of Mathematical Chemistry)

<u>計算条件:</u> Conversion mode: Automated OASIS

Conformer generation: Rapid

Calculation method: AM1

3. データ解析及びグラフ描画

Igor Pro ver.5.05 (Wave Metrics)

Kaleida Ver.3.6 (Synergy Software)

OECD (Q)SAR Application Toolbox ver1.0(Laboratory of Mathematical Chemistry)

4. 構造活性相関ソフトウェア

BCFWIN ver.2.15 (US EPA)

化学物質特性予測システム ver.2.18[CERI モデル] ((財)化学物質評価研究機構) Catabol ver.5.100[Baseline モデル] (Laboratory of Mathematical Chemistry)

<u>11. 参考文献</u>

- OECD 原則に基づく構造活性相関モデルのバリデーション BIOWIN5: <u>http://www.safe.nite.go.jp/kasinn/qsar/qsar_pdf/biowin5.pdf</u> 生分解性予測システム: <u>http://www.safe.nite.go.jp/kasinn/qsar/qsar_pdf/ceri.pdf</u> Catabol: <u>http://www.safe.nite.go.jp/kasinn/qsar/qsar_pdf/catabol.pdf</u>
- 2) 化学物質総合情報システム (CHRIP): <u>http://www.safe.nite.go.jp/japan/db.html</u>
- 3) 古賀直文, *生体膜と膜透過*, 南江堂, 46-65(1964)
- 4) Lipinski CA., Advanced Drug Delivery Reviews, 23(1-3), 3-25(1997).
- 5) Hayton WL., Environmental Toxicology and Chemistry, 9(2), 151-157(1990).
- 6) Isaia J., The Journal of Physiology, 326(1), 297-307(1982).
- 7) 構造活性相関懇話会編, *薬物の構造活性相関 ドラッグデザインと作用機作研究への指 針*,南江堂, 365-371(1979).
- 8) 加藤隆一, *臨床薬物動態学 改訂第3版*, 南江堂, 5-8(2003).
- M. CRAIG BARBER, Environmental Toxicology and Chemistry, 22(9), 1963–1992 (2003).
- 10) 若林明子, 化学物質と生態毒性 改訂版, 丸善, 193-196(2003).
- 11) Israelachvili J. N., *分子間力と表面力 第2版*, 朝倉書店, 393-400(1996).
- 12) 西尾元宏, 有機化学のための分子間力入門, 16-22(2009).
- 13) 木下實ほか訳, ベッカー 一般化学 上, 300(1983).
- 14) NITE 化学物質管理センターHP (カテゴリーアプローチによる化学物質の生物濃縮性 予測に関する検討結果の公表について):
 http://www.safe.nite.go.jp/kasinn/gsar/category approach.html
- 15) OECD Quantitative Structure-Activity Relationships [(Q)SARs] Project : http://www.oecd.org/document/23/0,3343,en_2649_34365_33957015_1_1_1_00.html
- 16) 経済産業省 HP(化学物質の製造・輸入量に関する実態調査(平成19年度実績)結果報告(確報)):

http://www.meti.go.jp/policy/chemical_management/kasinhou/kakuhou19.html

17) Nishihara T., Saito S., Matsuo M., *Pharmaceutical Society of Japan*, 39, 494-508(1993)

1. 化学物質の魚体中への取り込みと排出の考え方 17)

1.1 速度論的解釈

一般的な化学物質の魚類における取り込みと排出は、基本的に受動拡散によって起こる。 ここで、魚類における水中の化学物質の取り込みと排出の速度定数を K_1 、 K_2 、時間をtと おき、生物濃縮の過程をコンパートメントモデル(Fig.1 の左図)で表現すると、水中の化学 物質濃度(C_w)と魚体中の化学物質濃度(C_f)は、次の速度式で表現される。

$$\frac{\mathrm{d}\mathbf{C}_{\mathrm{w}}}{\mathrm{d}t} = \mathbf{K}_2 \cdot \mathbf{C}_{\mathrm{f}} - \mathbf{K}_1 \cdot \mathbf{C}_{\mathrm{w}} \tag{1}$$

$$\frac{\mathrm{d}C_{\mathrm{f}}}{\mathrm{d}t} = \mathrm{K}_{1} \cdot \mathrm{C}_{\mathrm{w}} - \mathrm{K}_{2} \cdot \mathrm{C}_{\mathrm{f}} \tag{2}$$

t=0のとき $C_f=0$ より、(2)式を積分して整理すると、(3)式が与えられる。

$$C_{f} = \frac{K_{1}}{K_{2}} \cdot C_{w} \left[1 - \exp(-K_{2}t) \right]$$
(3)

t=∞のとき、(4)式が成立することから、BCF=(C_f / C_w)が取り込みと排出の速度定数の比として表現されることがわかる。

Fig.1 生物濃縮過程における水-魚体中と1-オクタノール中の 化学物質の平衡(模式図)

1.2 熱力学的解釈

化学物質の魚類における取り込みと排出に伴う熱力学的な変化を考えると、BCF=(C_f / C_w)は化学物質の水中における標準化学ポテンシャル ($\mu 0_w$) と魚体中における標準化学ポテンシャル ($\mu 0_f$) の差として考えることができる(Fig.1 の左図)。

$$\mu_{\rm f}^0 - \mu_{\rm w}^0 = -RT \cdot \ln(\frac{C_{\rm f}}{C_{\rm w}}) \tag{5}$$

$$= -2.303 \text{RT} \cdot \text{logBCF}$$
(6)

ここで R は気体定数、T は絶対温度である。

2. 化学物質の生物濃縮性(logBCF)と logPow の関係¹⁷⁾

化学物質の疎水性を計る指標の一つとして用いられる $1 - \frac{1}{2}$ クタノール/水分配係数 (Pow)^{*2}は、 $1 - \frac{1}{2}$ クタノール中の標準化学ポテンシャル(μ^{0}_{oct}) と μ^{0}_{w} の差として考えることができ、(7)式が成り立つ(Fig.1の右図)。

$$\mu_{\rm oct}^0 - \mu_{\rm w}^0 = -RT \cdot \ln Pow \tag{7}$$

$$= -2.303 \text{RT} \cdot \log \text{Pow} \tag{8}$$

よって、µ⁰_{oct} ∝µ⁰_fのとき、(6)、(8)から次式が成立する。

 $\log BCF = a \cdot \log Pow - b \tag{9}$

ここで、a、bは任意の定数である。

(9)式より、化学物質の1-オクタノール中における標準化学ポテンシャル(μ ⁰_{ot})と魚 体中における標準化学ポテンシャル(μ ⁰_f)における差が小さい(μ ⁰_{ot} $\propto \mu$ ⁰_f)の場合に、 logBCFと logPow との間に直線関係が成り立つ。 μ ⁰_{ot} と μ ⁰_fの差は、化学物質と1-オク タノールまたは魚体中の生体分子(脂肪、リン脂質など)との間における分子間相互作用(フ ァンデルワールスカ、双極子一双極子相互作用、水素結合性相互作用、イオン性相互作用) の違いによって生じると考えられる。

一方、ファンデルワールス力、双極子ー双極子相互作用などの比較的弱い(非極性)相互作 用のみが生物濃縮性に影響を与える物質群では、上述のような違いは生じ難いと考えられ、 $\mu^{0_{\text{oct}}} \geq \mu^{0_{\text{f}}}$ は近似または比例関係を示し、logPow $\geq \log$ BCF は直線関係を持つことが期待 できる。

3. 補足データ:

カテゴリーII-A に該当する物質の logBCF 予測に用いる予測式(1)または予測式(2)と logPow と logBCF の相関が弱くなる傾向にある logPow \geq 6 の物質及び分子サイズ(Dmax^{*3}) が大きく、生体膜透過における拡散速度が遅くなる傾向にある物質(別添 2 の Table 2)の logPow vs. logBCF プロットを Fig.2,3 に示す。

カテゴリーII-Aに該当する物質と生体分子間には、双極子-双極子相互作用が働く(本 文のTable1,2を参照)。生物濃縮性に対する双極子-双極子相互作用の影響を調べるために、 双極子モーメントの2乗(μ^{2*4})とモル屈折率*5(α と相関がある値、以下 MR と示す。)を記 述子として用いて物質の分類を行い、logPow と logBCFをプロットした。その結果を Fig.4,5 に示す。 μ^2 、MR の閾値には、それぞれ 10.90、7.19(カテゴリーIに該当する物質におけ る最大値[未公開データ])を用いた。Fig.4 を見ると、Dmax<11Åの物質は μ^2 、MR の値に 関係なく、logPow(実測値)と logBCF 間には良好な相関を持つことがわかった。このことは、 化学物質の生物濃縮性において、双極子-双極子相互作用の及ぼす影響が弱いことを示して いる。 Fig.5 において、一部の物質で logPow(計算値)と logBCF 間の相関が弱い傾向が見られた。 これらの相関から外れた物質は、logPow(実測値)が測定されていない。また、カテゴリーⅡ -A に該当する一部の物質(3,36,51,57,58,65 など)において、logPow の計算誤差が大きい傾 向にあることから、このことが要因の一つとして働き、相関が弱い傾向にあったと考えられ る。

Fig.2 予測式(1)とカテゴリー II - A に該当する物質の logPow(実測値) vs. logBCF プロット (67 物質)

Fig.3 予測式(2)とカテゴリー II – A に該当する物質の logPow(計算値) vs. logBCF プロット (78 物質)

Fig.4-1 予測式(1)とカテゴリー II - A に該当する物質(μ²≦10.90 かつ MR≦7.19)の logPow(実測値) vs. logBCF プロット

Fig.4-2 予測式(1)とカテゴリー II - A に該当する物質(μ²>10.90 または MR>7.19)の logPow(実測値) vs. logBCF プロット

Fig.5-1 予測式(2)とカテゴリー I -A に該当する物質(μ²≦10.90 かつ MR≦7.19)の logPow(計算値)^{*3} vs. logBCF プロット

Fig.5-2 予測式(2)とカテゴリー I - A に該当する物質(μ²>10.90 または MR>7.19)の logPow(計算値)^{*3} vs. logBCF プロット

- *1化学物質の魚体中濃度と水中濃度との比([魚体中濃度]/[水中濃度])
- *2 水と1-オクタノールの2つの溶媒層に化学物質を加えて、平衡に達したときの濃度比 ([1-オクタノール中の物質濃度]/[水中の物質濃度])
- *3 logPow(計算値): KOWWIN ver.1.67を用いて算出される値

*4 Dmax:分子を球に入れたとき最小となる直径の値

Database Manager ver.1.3 を用いて算出

<u>計算条件</u>: Conversion mode: Automated OASIS Conformer generation: Rapid Calculation method: AM1

*5 μ²: 双極子モーメントの2乗、Database Manager ver.1.3を用いて算出(計算条件は*4と同じ)

*6 MR: 分子屈折率、MOE ver. 2009.10 を用いて算出(Chemical Computing Group Inc.)

1. カテゴリーII-Aに該当する化審法既存化学物質及び未試験化学物質のリスト

No.	CAS No.	分子構造	分子量	logBCF (実測値) [─]	logPow (実測値) [─]	logPow*3 (計算値) [─]	対水溶解性 [mg/l]	Dmax*4 [Å]	μ ² *5 [D ²]	MR*6 [-]
1	60-57-1		380.9	4.03	5.65	5.45	0.19	10.44	0.90	7.54
2	72-20-8		380.9	4.03	5.41	5.45	0.18	9.93	1.35	7.54
3	81-15-2	0 N+ 0 N+ 0 N+ 0 N+ 0 N+ 0 N+ 0 N+ 0 N+ 0 N+ 0 N+ 0 N+ 0 N+ 0 N+ 0 N+ 0 0 N+ 0 0 N+ 0 0 0 0 0 0 0 0 0 0 0 0 0	297.3	3.74	5.21	4.45	0.47	10.85	2.26	7.03
4	18708-70-8		226.4	2.49	4.19	3.74	6.25	9.65	19.49	4.63
5	382-28-5		299.0	2.32	_	1.27	5.10	8.68	0.09	2.61
6	2216-69-5		158.2	2.26	3.65	3.25	10.0	10.12	1.27	5.01
7	118-83-2		225.6	1.94	3.42	3.42	100	9.67	32.58	4.29
8	100-43-6	N	105.1	1.91	_	1.71	10000	8.92	5.04	3.46

No.	CAS No.	分子構造	分子量	logBCF (実測値) [─]	logPow (実測値) [─]	logPow*3 (計算值) [─]	対水溶解性 [mg/l]	Dmax*4 [Å]	μ ² *5 [D ²]	MR*6 [-]
9	3209-22-1		192.0	1.80	3.04	3.10	74.1	9.15	24.14	4.22
10	91-66-7		149.2	1.74	3.31	3.15	14286	10.36	1.74	4.90
11	89-61-2		192.0	1.70	3.01	3.10	83.0	9.48	22.41	4.21
12	1631-58-9	N	149.3	1.69	_	1.38	2000	8.81	12.20	4.02
13	99-54-7		192.0	1.66	3.04	3.10	100	9.65	14.39	4.21
14	121-86-8		171.6	1.55	3.00	3.00	58.0	9.51	27.35	4.24
15	611-06-3		192.0	1.55	2.90	3.10	188	9.69	18.24	4.21
16	110-81-6	S-S-	122.3	1.31	3.00	2.86	240	9.32	4.42	3.46

No.	CAS No.	分子構造	分子量	logBCF (実測値) [−]	logPow (実測値) [─]	logPow*3 (計算值) [─]	対水溶解性 [mg/l]	Dmax*4 [Å]	μ ² *5 [D ²]	MR*6 [-]
17	612-22-6	0. 0. 0	151.2	1.19	3.29	2.85	100	9.44	25.11	4.24
18	88-72-2		137.1	1.18	2.35	2.36	652	8.54	25.33	3.76
19	100-00-5		157.6	1.14	2.46	2.46	453	9.64	16.99	3.78
20	88-73-3		157.6	1.12	2.24	2.46	440	8.51	28.86	3.78
21	100-17-4		153.1	1.04	2.01	1.89	590	10.65	35.89	3.94
22	108-60-1	CI	171.1	0.98	2.11	2.39	1700	10.35	0.02	4.16
23	99-08-1		137.1	0.91	2.42	2.36	100	9.24	29.65	3.76
24	121-69-7		121.2	0.84	2.31	2.17	1450	9.35	1.93	3.96

No.	CAS No.	分子構造	分子量	logBCF (実測値) [−]	logPow (実測値) [─]	logPow*3 (計算值) [─]	対水溶解性 [mg/l]	Dmax*4 [Å]	μ ² *5 [D ²]	MR*6 [-]
25	99-99-0		137.1	0.79	2.37	2.36	442	9.49	32.81	3.76
26	555-03-3		153.1	0.75	2.16	1.89	100	10.34	18.37	3.94
27	626-67-5		99.2	0.64	1.33	1.40	10000	7.72	1.40	3.11
28	103-83-3		135.2	0.62	1.98	1.75	12000	9.62	0.91	4.42
29	616-44-4	S	98.2	0.60	2.66	2.36	100	7.66	0.02	3.04
30	91-23-6		153.1	0.60	1.73	1.89	1690	9.27	39.77	3.94
31	102-70-5		137.2	0.56	2.51	2.58	500	10.27	0.93	4.57
32	98-95-3		123.1	0.49	2.02	1.81	1.90	8.48	27.37	3.30

No.	CAS No.	分子構造	分子量	logBCF (実測値) [−]	logPow (実測値) [─]	logPow*3 (計算值) [─]	対水溶解性 [mg/l]	Dmax*4 [Å]	μ ² *5 [D ²]	MR*6 [-]
33	95-16-9	S N	135.2	0.47	2.01	2.17	4300	9.02	2.46	4.05
34	110-02-1	s	84.1	0.37	1.84	1.81	1000	6.71	0.12	2.59
35	10315-98-7		143.2	0.27	_	1.05	28000	10.01	1.75	4.23
36	78-59-1		138.2	0.14	1.67	2.62	12000	8.98	14.72	4.19
37	110-00-9	°	68.1	0.05	1.34	1.36	96.0	6.54	0.23	2.08
38	60-29-7	<u> </u>	74.1	0.02	0.89	1.05	20000	7.66	2.18	2.28
39	91-15-6	N	128.1	0.00	1.03	1.09	395	9.07	27.98	3.93
40	109-06-8	N	93.1	-0.12	1.11	1.35	100000	8.03	3.06	3.05

No.	CAS No.	分子構造	分子量	logBCF (実測値) [-]	logPow (実測値) [-]	logPow*3 (計算値) [─]	対水溶解性 [mg/l]	Dmax*4 [Å]	μ²*5 [D²]	MR*6 [-]
41	68-12-2	N0	73.1	-0.17	-1.01	-0.93	1040000	6.74	12.62	2.05
42	123-91-1		88.1	-0.23	-0.34	-0.32	1000000	6.99	0.00	2.27
43	126-33-0	0 o	120.2	-0.27	-0.78	-0.24	1000000	6.97	17.51	2.82
44	579-10-2	O N	149.2	-0.30	1.12	0.93	1000	10.4	12.23	4.55

Table1 トレーニングセット(予測式の適用範囲内の化審法既存化学物質(44 物質)) [続き]

No.	CAS No.	分子構造	分子量	logBCF (実測値) [─]	logPow (実測値) [─]	logPow*3 (計算值) [─]	対水溶解性 [mg/l]	Dmax*4 [Å]	μ²*5 [D²]	MR*6 [-]
45	335-36-4		416.1	3.87	_	5.90	1000	11.29	0.95	3.55
46	4979-32-2	S N N	346.6	3.78	-	5.95	0.0019	14.32	7.40	10.24
47	1836-75-5		284.1	3.54	4.65	4.32	0.70	13.8	27.78	6.91
48	127-90-2		377.7	3.37	5.77	5.10	1.53	12.59	1.39	6.73
49	1836-77-7		318.5	3.12	4.63	4.96	0.25	14.23	28.26	7.35
50	3586-14-9		184.2	3.07	4.46	4.60	5.00	11.62	2.12	5.87
51	132-64-9		168.2	3.05	4.64	3.71	4.10	11.1	1.23	5.28
52	132-65-0	S	184.3	3.05	4.40	4.17	0.70	11.28	0.30	5.80

Table2 トレーニングセット(Dmax≧11Åまたは logPow(計算値)≧6の 化審法既存化学物質(34物質))

No.	CAS No.	分子構造	分子量	logBCF (実測値) [-]	logPow (実測値) [-]	logPow*3 (計算値) [─]	対水溶解性 [mg/l]	Dmax*4 [Å]	μ²*5 [D²]	MR*6 [-]
53	13936-21-5		278.3	2.91	5.59	5.86	0.50	17.84	0.49	8.45
54	13358-11-7		345.5	2.89	5.96	6.07	0.040	16.12	4.66	10.19
55	84-51-5		236.3	2.83	4.52	4.38	1.00	13.75	0.25	7.05
56	1582-09-8	,0, N, +,0 P, N, +,0 F, F, F, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	335.3	2.82	5.34	5.31	0.18	13.19	4.02	7.53
57	103-44-6	0	156.3	2.78	5.04	3.79	1.80	13.13	0.62	5.00
58	2173-57-1		200.3	2.75	5.24	4.65	1.23	13.56	1.05	6.37
59	101-84-8		170.2	2.45	4.22	4.05	18.0	11.42	1.79	5.42
60	103-50-4	0	198.3	2.37	3.52	3.48	40.0	13.23	1.42	6.36

Table2 トレーニングセット(Dmax≧11Åまたは logPow(計算値)≧6の

化審法既存化学物質(34 物質))[続き]

No.	CAS No.	分子構造	分子量	logBCF (実測値) [-]	logPow (実測値) [-]	logPow*3 (計算值) [─]	対水溶解性 [mg/l]	Dmax*4 [Å]	μ²*5 [D²]	MR*6 [-]
61	84-47-9		264.3	2.26	_	5.25	0.17	14.15	0.36	7.91
62	131-09-9	CI O	242.7	2.20	4.46	3.99	880	12.89	1.75	6.60
63	544-01-4		158.3	2.14	4.25	3.85	10.8	13.71	1.41	4.99
64	82-05-3		230.3	2.07	5.11	4.73	1.80	11.77	10.36	7.16
65	_	CI	196.6	2.05	4.73	2.67	18.2	13.91	3.34	5.33
66	1116-76-3		353.7	2.02	_	10.35	0.050	21.09	0.81	11.60
67	21850-44-2	Br Br Br Br Br Br	943.6	1.74	-	11.52	0.0067	21.69	36.49	15.42
68	142-96-1	~~~ ₀ ~~~	130.2	1.66	3.28	3.01	126.0	13.75	1.43	4.13

Table2 トレーニングセット(Dmax≧11Åまたは logPow(計算値)≧6の

化審法既存化学物質(34 物質))[続き]

No.	CAS No.	分子構造	分子量	logBCF (実測値) [−]	logPow (実測値) [─]	logPow*3 (計算值) [─]	対水溶解性 [mg/l]	Dmax*4 [Å]	μ²*5 [D²]	MR*6 [-]
69	2498-66-0		258.3	1.64	4.40	4.52	1.57	13.55	4.55	7.72
70	90-94-8		268.4	1.42	4.05	3.50	0.65	16.16	8.84	8.25
71	86-30-6		198.2	1.11	3.16	3.16	35.1	11.52	8.68	5.99
72	119-61-9		182.2	0.90	3.18	3.15	45.0	11.74	9.35	5.80
73	102-82-9	NN	185.3	0.65	_	4.46	66.0	12.43	0.63	6.07
74	137-26-8		240.4	0.47	1.80	1.70	16.1	12.54	0.21	6.26
75	1502-22-3		178.3	0.37	3.17	3.73	100	11.45	7.16	5.45
76	120-78-5	S N N	332.5	0.30	_	4.66	10.0	15.73	3.19	9.17

Table2 トレーニングセット(Dmax≧11Åまたは logPow(計算値)≧6の

化審法既存化学物質(34 物質))[続き]

No.	CAS No.	分子構造	分子量	logBCF (実測値) [-]	logPow (実測値) [-]	logPow*3 (計算値) [-]	対水溶解性 [mg/l]	Dmax*4 [Å]	μ²*5 [D²]	MR*6 [-]
77	134-62-3	O Z	191.3	0.20	2.06	2.26	1000	11.76	12.86	5.94
78	111-44-4	CI CI	143.0	-0.08	1.24	1.56	10300	11.03	0.00	3.27

Table2 トレーニングセット(Dmax≧11Åまたは logPow(計算値)≧6の 化審法既存化学物質(34 物質))[続き]

No.	CAS No.	分子構造	分子量	logBCF (予測値) [-]	logPow (実測値) [-]	logPow*3 (計算値) [─]	Dmax*4 [Å]
79	32388-55-9		246.4	3.69	_	5.02	10.6
80	1132-95-2		200.3	3.22	_	4.56	10.1
81	830-13-7		182.3	2.71	4.1	4.07	9.8
82	98-59-9		190.6	2.11	Η	3.49	10.0
83	470-82-6		154.2	1.74	2.74	3.13	8.5
84	76-22-2	→	152.2	1.65	2.74	3.04	8.1
85	98-09-9		176.6	1.55	_	2.94	9.0
86	1746-13-0		134.2	1.53	2.94	2.92	10.2

No.	CAS No.	分子構造	分子量	logBCF (予測値) [-]	logPow (実測値) [-]	logPow*3 (計算值) [-]	Dmax*4 [Å]
87	13750-62-4		172.2	1.47	_	2.86	10.9
88	34841-35-5	CI	168.6	1.41	_	2.81	10.5
89	602-38-0	-0 N+-0-	218.2	1.40	2.58	2.8	9.8
90	1694-92-4		221.6	1.36	-	2.76	9.1
91	99–97–8		135.2	1.32	2.81	2.72	10.3
92	2182-55-0		126.2	1.29	-	2.69	9.6
93	91-63-4	N	143.2	1.29	2.59	2.69	10.2
94	127-63-9		218.3	1.21	2.4	2.61	10.9

Table3 カテゴリーⅡ-Aに該当する物質(未点検既存化学物質(64物質))[続き]

No.	CAS No.	分子構造	分子量	logBCF (予測値) [-]	logPow (実測値) [-]	logPow*3 (計算値) [-]	Dmax*4 [Å]
95	108–75–8	N	121.2	1.04	1.88	2.45	8.8
96	104–90–5	Z	121.2	0.98	_	2.39	10.3
97	98-94-2	Z	127.2	0.90	-	2.31	8.7
98	577-16-2	0	134.2	0.81	Η	2.22	9.4
99	140-53-4	C	151.6	0.80	2.47	2.21	10.6
100	623-03-0		137.6	0.77	2.47	2.18	10.2
101	2210-79-9		164.2	0.74	-	2.16	10.8
102	93-55-0	0	134.2	0.74	2.19	2.16	10.5

Table3 カテゴリーⅡ-Aに該当する物質(未点検既存化学物質(64物質))[続き]

No.	CAS No.	分子構造	分子量	logBCF (予測値) [-]	logPow (実測値) [-]	logPow*3 (計算値) [─]	Dmax*4 [Å]
103	151-10-0	0	138.2	0.73	2.21	2.15	10.2
104	119-65-3		129.2	0.72	2.08	2.14	9.3
105	100-66-3		108.1	0.65	2.11	2.07	9.3
106	274-09-9	o o	122.1	0.63	2.08	2.05	8.5
107	96-08-2	o	168.2	0.61	_	2.03	10.6
108	64248-62-0	F N	139.1	0.52	-	1.94	9.5
109	583-61-9	N	107.2	0.48	_	1.9	8.0
110	108-48-5	N	107.2	0.48	1.68	1.9	8.7

No.	CAS No.	分子構造	分子量	logBCF (予測値) [-]	logPow (実測値) [-]	logPow*3 (計算値) [─]	Dmax*4 [Å]
111	583-58-4	N	107.2	0.48	-	1.9	8.0
112	591-22-0	N	107.2	0.48	1.78	1.9	8.9
113	108-47-4	Z	107.2	0.48	_	1.9	8.6
114	935-92-2	0	150.2	0.47	1.82	1.89	9.1
115	1192-52-5		187.1	0.40	_	1.83	8.1
116	586-37-8		150.2	0.32	1.84	1.75	10.5
117	105-12-4	0 ^{-N}	136.1	0.30	_	1.73	9.9
118	98-86-2		120.1	0.24	1.58	1.67	9.4

No.	CAS No.	分子構造	分子量	logBCF (予測値) [-]	logPow (実測値) [-]	logPow*3 (計算値) [─]	Dmax*4 [Å]
119	100-25-4		168.1	0.20	1.46	1.63	9.9
120	122-60-1	0 0	150.2	0.18	_	1.61	10.7
121	96-09-3		120.1	0.16	1.61	1.59	9.5
122	140-29-4	Z	117.1	0.13	1.56	1.56	9.4
123	100-47-0		103.1	0.11	1.56	1.54	9.1
124	121-89-1		165.1	0.05	1.42	1.49	9.9
125	108-89-4	N	93.1	-0.09	1.22	1.35	7.7
126	13423-15-9	0	86.1	-0.09	-	1.35	7.5

Table3	カテブリ—	Ⅱ-△に該当る	る物質(未	占检照左化	兰 物啠(64	物質))[続き]
Iables	77777		の初貝(不)	尻(皮以)け(し)	于70頁(04	1の貝川し心し」

No.	CAS No.	分子構造	分子量	logBCF (予測値) [-]	logPow (実測値) [-]	logPow*3 (計算値) [─]	Dmax*4 [Å]
127	110-87-2	O	84.1	-0.23	0.69	1.21	7.1
128	1739-84-0	N N	96.1	-0.30	-	1.15	7.5
129	1072-68-0	N	96.1	-0.30	_	1.15	8.5
130	108-94-1	°	98.1	-0.32	0.81	1.13	7.5
131	1122-58-3		122.2	-0.47	1.34	0.98	8.9
132	109-99-9	0	72.1	-0.51	0.46	0.94	6.3
133	110-86-1	N	79.1	-0.66	0.65	0.8	7.1
134	100-48-1	N N	104.1	-1.12	0.46	0.35	8.4

No.	CAS No.	分子構造	分子量	logBCF (予測値) [-]	logPow (実測値) [-]	logPow*3 (計算值) [─]	Dmax*4 [Å]
135	100-70-9		104.1	-1.12	0.45	0.35	9.0
136	106-51-4	0	108.1	-1.22	0.2	0.25	8.1
137	19847–12–2		105.1	-1.44	-0.01	0.04	9.0
138	646-06-0		74.1	-1.80	-0.37	-0.31	6.1
139	109-02-4	N	101.1	-1.84	-0.33	-0.35	7.4
140	4385-05-1	N N O	158.2	-2.15	_	-0.65	10.0
141	101-25-7		186.2	-3.23	_	-1.7	8.1
142	100-97-0		140.2	-5.75	-	-4.15	7.0

2. 様々な理由で解析に使用しなかった物質:

カテゴリーII-A の定義に該当するが、試験条件等の理由で解析に使用しなかった化審 法既存化学物質を示す(Table4)。

No.	CAS No.	分子構造	分子量	logBCF (実測値) [-]	logPow ^{*3} (計算値) [─]	除外理由
143	504-53-0	H ₃ C(H ₂ C) ₁₆ CH ₃ O	506.9	検出限界 以下	15.48	・対水溶解度の値が 明確に測定されてい ない。
144	1163-19-5	Br Br Br Br Br Br Br Br	959.2	検出限界 以下	12.11	・BCFの値が明確に 測定されていない(検 出限界以下)。
145	10496-18-1	H ₃ C(H ₂ C) ₉ S (CH ₂) ₉ CH ₃	346.7	検出限界 以下	10.71	・対水溶解度の値が 明確に測定されてい ない。
146	60628-17-3	0 - CH ₂) ₁₂ CH ₃	416.5	検出限界 以下	10.07	・対水溶解度の値が 明確に測定されてい ない。
147	311-89-7	$(CF_2)_3CF_3$ $F_3C(F_2C)_3$ (CF_2)_3(671.1	1.48	9.98	・対水溶解度の値が 明確に測定されてい ない。
148	36483-60-0	Br Br E	643.6	2.92	8.55	・混合物で測定されて いる。
149	6731-36-8		302.4	3.87	7.56	・試験濃度が対水溶 解度よりも大きいた め、BCF値が正確に 測定されていない可 能性がある。

Table4 解析に使用しなかった化審法既存化学物質(49物質)とその除外理由

No.	CAS No.	分子構造	分子量	logBCF (実測値) [-]	logPow ^{*3} (計算值) [-]	除外理由
150	36065-30-2	Br Br Br	544.7	4.42	6.79	・対水溶解度の値が 明確に測定されてい ない。
151	5586-15-2	S S	318.5	検出限界 以下	6.66	・対水溶解度の値が 明確に測定されてい ない。
152	78-63-7	$\rightarrow \circ \sim \rightarrow \sim \sim \circ \circ$	290.4	3.34	6.55	・試験濃度が対水溶 解度よりも大きいた め、BCF値が正確に 測定されていない可 能性がある。
153	41122-70-7		263.4	3.47	6.31	・試験濃度が対水溶 解度よりも大きいた め、BCF値が正確に 測定されていない可 能性がある。
154	80-43-3		270.4	2.69	5.88	・試験濃度が対水溶 解度よりも大きいた め、BCF値が正確に 測定されていない可 能性がある。
155	40464-54-8		416.1	3.79	5.75	・対水溶解度の値が 明確に測定されてい ない。
156	101-68-8	OFCEN OLON	250.3	2.31	5.22	・対水溶解度の値が 明確に測定されてい ない。
157	85954-11-6		354.4	検出限界 以下	5.19	・BCFの値が明確に 測定されていない(検 出限界以下)。

No.	CAS No.	分子構造	分子量	logBCF (実測値) [-]	logPow ^{*3} (計算値) [─]	除外理由
158	-		222.3	2.72	4.58	・試験濃度が対水溶 解度よりも大きいた め、BCF値が正確に 測定されていない可 能性がある。
159	101-61-1	N C C C C	254.4	2.63	4.37	・対水溶解度の値が 明確に測定されてい ない。
160	882-33-7	S S	218.3	検出限界 以下	4.31	・BCFの値が明確に 測定されていない(検 出限界以下)。
161	32669-06-0	CI CI	246.7	2.57	4.15	・対水溶解度の値が 明確に測定されてい ない。
162	82-44-0		242.7	2.27	3.99	・対水溶解度の値が 明確に測定されてい ない。
163	30171-80-3	Br Br O	322.0	検出限界 以下	3.94	・対水溶解度の値が 明確に測定されてい ない。
164	80-07-9		287.2	1.88	3.90	・試験濃度が対水溶 解度よりも大きいた め、BCF値が正確に 測定されていない可 能性がある。
165	584-84-9	° _{SC_N} , N [−] C [−] C	174.2	2.11	3.74	・対水溶解度の値が 明確に測定されてい ない。

No.	CAS No.	分子構造	分子量	logBCF (実測値) [-]	logPow ^{*3} (計算値) [-]	除外理由
166	1897-45-6		265.9	検出限界 以下	3.66	・BCFの値が明確に 測定されていない(検 出限界以下)。
167	21564-17-0	S N	238.4	検出限界 以下	3.12	・BCFの値が明確に 測定されていない(検 出限界以下)。
168	6674-22-2		152.2	検出限界 以下	2.70	・BCFの値が明確に 測定されていない(検 出限界以下)。
169	-		183.2	0.91	2.31	・対水溶解度の値が 明確に測定されてい ない。
170	97-00-7		202.6	検出限界 以下	2.27	・BCFの値が明確に 測定されていない(検 出限界以下)。
171	25321-14-6		182.1	0.90	2.18	・対水溶解度の値が 明確に測定されてい ない。
172	610-39-9		182.1	検出限界 以下	2.18	・BCFの値が明確に 測定されていない(検 出限界以下)。
173	91-22-5	N	129.2	検出限界 以下	2.14	・BCFの値が明確に 測定されていない(検 出限界以下)。

No.	CAS No.	分子構造	分子量	logBCF (実測値) [-]	logPow ^{*3} (計算值) [-]	除外理由
174	122-57-6		146.2	検出限界 以下	2.04	・BCFの値が明確に 測定されていない(検 出限界以下)。
175	75-15-0	s=c=s	76.1	検出限界 以下	1.94	・BCFの値が明確に 測定されていない(検 出限界以下)。
176	25154-54-5		168.1	0.35	1.63	・混合物で測定されて いる。
177	3089-11-0		390.4	検出限界 以下	1.61	・対水溶解度の値が 明確に測定されてい ない。
178	121-44-8	N	101.2	検出限界 以下	1.51	・BCFの値が明確に 測定されていない(検 出限界以下)。
179	109-09-1	N CI	113.5	検出限界 以下	1.45	・BCFの値が明確に 測定されていない(検 出限界以下)。
180	108-99-6		93.1	検出限界 以下	1.35	・BCFの値が明確に 測定されていない(検 出限界以下)。
181	626-17-5	N	128.1	検出限界 以下	1.09	・対水溶解度の値が 明確に測定されてい ない。

No	o. CAS No.	分子構造	分子量	logBCF (実測値) [-]	logPow ^{*3} (計算値) [-]	除外理由
18	2 623-26-7	N	128.1	-0.01	1.09	・対水溶解度の値が 明確に測定されてい ない。
18	3 79-46-9	0 -0 N ⁺	89.1	検出限界 以下	0.87	・BCFの値が明確に 測定されていない(検 出限界以下)。
18	4 123-63-7		132.2	検出限界 以下	0.70	・BCFの値が明確に 測定されていない(検 出限界以下)。
18	5 280-57-9		112.2	検出限界 以下	-0.49	・BCFの値が明確に 測定されていない(検 出限界以下)。
18	6 67–68–5	S U O	78.1	検出限界 以下	-1.22	・BCFの値が明確に 測定されていない(検 出限界以下)。

Table4 解析に使用しなかった化審法既存化学物質(49物質)とその除外理由[続き]

用語集:

[BCFWIN ver.2.15]

アメリカの EPA で使用されているモデル。予測対象物質をイオン性と非イオン性に分類し、 logPow-logBCF の相関式から BCF を予測する。logPow の算出には KOWWIN を使用する。

【CERI モデル ver.2.18】

(財)化学物評価研究機構によって開発されたモデル。予測対象物質を分子構造によって予測困難 物質、定性予測を行う物質、logPow-logBCFの相関式を用いて予測する物質に分類し、BCFの 予測を行う。logPowの算出には ClogP を使用する。

[Baseline Model ver.5.100]

ブルガリアにある Prof. Assen Zlatarov 大学の Dimitrov らによって提唱されたモデル。この モデルでは、logPow で表される受動拡散の式から logBCFmax を算出し、この値から物質の代謝 性、分子サイズ、解離性などで表される Mitigation Factor を引くことによって BCF の予測を行 う。物質の代謝性は、論文等で公表されている Rat の代謝情報をデータベース化したシミュレー タより求める。分子サイズは、自動生成されるいくつかの分子配座を初期構造とし、半経験的量 子化学計算を用いて計算される最安定構造から算出する。量子化学計算には mopac、logPow の 算出には KOWWIN を使用する。

改訂履歴

版数	発行日	改訂内容
第1版	2010 年 12 月 14 日	・初版発行
第 1.1 版	2011年12月22日	 第1版第1章の文章の変更